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Detection of Mitotic and Meiotic
Aneuploidy in the Yeast
Saccharomyces cerevisiae
by James M. Parry,* D. Sharp,* and Elizabeth M. Parry*

A number of genetic systems are described which involve the use of the yeast Saccharomyces cerevisiae.
The systems may be used to detect the production of aneuploid cells produced during both mitotic and
meiotic cell division in the presence of genetically active chemicals.
During mitotic cell division, monosomic colonies (2n - 1) may be detected by plating upon selective

medium. Increases in such monosomic colonies are produced by exposure of cells to a number of chemical
mutagens such as ethyl methane-sulfonate and mitomycin C. More importantly, monosomic colonies are
also induced by nonmutagens such as sulfacetamide and saccharin, which suggests that such chemicals are
capable of inducing aneuploidy (aneugenic) in the absence of mutagenic activity. Genetic analysis of
aneuploid colonies produced on nonselective medium indicate that at least a proportion of the monosomic
colonies were the result of nitotic nondisjunction.
During meiotic cell division, disomic cells (n + 1) produced by chromosome nondisjunction may be

detected by plating on selective media. The frequency of disomic cells has been shown to increase after
exposure to p-fluorophenylaianine.

Introduction
The processes of cell division meiosis and mitosis

must give exact distributions of chromosomes or
chromatids to daughter cells if the chromosome
number and genetic integrity of a species is to be
maintained as a constant. However, these processes
may be disturbed and the resulting cells may be
euploid or aneuploid. Euploidy describes chromo-
some numbers which are multiples of the haploid
number, whereas aneuploidy describes chromosome
numbers which are not multiples of the haploid num-
ber.
Aneuploid cells can result from nondisjunction,

which is the failure of paired chromosomes or sister
chromatids to pass to opposite poles ofthe spindle at
the anaphase of meiosis or mitosis. In mitosis such
nondisjunction will result in one trisomic daughter
cell and one monosomic daughter cell. Aneuploidy
may also result from anaphase lagging, in which
chromosomes or chromotids separate normally in
the early stages of cell division but one chromosome
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or chromatid moves slowly to the spindle pole and
tends to be included in the nucleus of neither daugh-
ter cell. In mitosis this would result in one daughter
cell being a normal diploid and the other a
monosomic. In multicellular organisms mitotic non-
disjunction may give rise to mosaicism: it may occur
during embryonic development or at later stages; the
latter may be associated with increasing age (1, 2) or
neoplastic change (3).
Aneuploidy resulting from meiotic nondisjunction

usually gives such a gross imbalance of chromo-
somes as to be fatal. In man, many types of auto-
somal aneuploidy have been found in spontaneously
aborted embryos, but only trisomic conditions of
some of the smaller autosomes or the sex chromo-
somes are compatible with postnatal life unless in a
mosaic form (4). Such surviving aneuploids repre-
sent a considerable individual and social burden.
Three autosomal trisomies are well established in
man: trisomy 21, 18, and 13; all three show an in-
creased mean maternal age at birth (4). It is possible
that differences in the meiotic pattern in the two
sexes may account for this. Paired meiotic chromo-
somes are held together by chiasmata, structures
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which are essential for the co-orientation ofbivalents
at first meiotic metaphase. The longer this period (in
females from the fetal ovary until ovulation), the
greater the risk of disrupting their integrity, either as
a result of an ageing process or from environmental
influences.
The yeast Saccharomyces cerevisiae is stable in

either a haploid phase or a diploid phase, although in
nature the diploid phase may predominate. Aneu-
ploid states also appear to be quite stable; both dip-
loids monosomic (2n - 1) for one chromosome and
haploids disomic (n + 1) have been found to be stable
enough for genetic studies and repeated culturing
(5-16). Many fungi have a parasexual cycle, the main
feature of which is the progressive haploidisation of
diploid nuclei which is believed to occur through
successive nondisjunctional events (17). In such
fungi the haploid stage is the stable form in nature. In
contrast, in yeast Strdmnaes (18) has shown that
DL-p-fluorophenylalanine treatment of a diploid cell
induces the formation of monosomics, but that hap-
loidisation does not occur. He also found that many
of his observations could best be explained by re-
peated nondisjunctional events restoring diploidy.
Since the vegetative cells of Saccharomyces cere-
visiae are normally diploid, we would expect there to
be stronger selection in a monosomic (2n - 1) cell for
nondisjunctional events leading back to diploidy
than towards haploidy because of the relative invia-
bility of aneuploids. In mycelial fungi, unstable nuc-
lei or nuclei with poor viability may survive in mul-
tinucleate hyphae until a stable form is achieved.
Successive nondisjunctional events may lead from a
diploid nucleus to aneuploids and to a stable haploid
form, but in a single-cell organism like yeast it is not
expected that successive nondisjunction will occur
to haploidy. In this respect (preference for the dip-
loid state), yeast studies may have more relevance to
our understanding of nondisjunction in higher or-
ganisms.

Meiosis and mitosis are themselves under genetic
control, and some ofthe genes involved may have an
effect upon the production of aneuploids. In yeast,
Haber (15, 19) has demonstrated a gene controlling
chromosome loss ofchromosome III and possibly of
others. Culbertson and Henry (11) have described a
fatty-acid requiring mutant in Saccharomyces cere-
visiae which exhibits a high frequency of spontane-
ous aneuploidy: the effect appears to be associated
with the chromosome on which the gene is mapped.
In Drosophila melanogaster mitotic instability has
also been reported; examples are claret nondisjunc-
tion (20, 21), paternal loss (22), and mitotic loss in-
ducer (23). Mutants having an effect on meiotic
aneuploidy in Drosophila have also been reported
(24-26). Davis (24) described one which causes a

high frequency of nondisjunction of all chromo-
somes at the second division of meiosis in males and
females apparently by the precocious separation of
sister centromeres so that sister chromatids are not
directed to opposite poles at metaphase.

Campbell, Fogel, and Lusnak (16) have studied
mitotic chromosome loss of chromosome III in yeast
and claim a correlation between chromosome loss
and genetic exchange. They propose that such ex-
change may potentiate sister centromeres to sepa-
rate prematurely.
Thus it is well established that aneuploidy occurs

spontaneously in yeast; Campbell, Fogel, and Lus-
nak (16) give a value in the order of 10-4/cell for the
loss of chromosome III during mitosis. Parry and
Zimmermann (27) have studied the effects of physi-
cal agents upon the rate of aneuploidy of chromo-
some VII. The chromosome was heavily marked
along its length and on both sides of the centromere
so that, should nondisjunction occur, all genetic
markers on this chromosome segregate en bloc.
They found that ultraviolet, x-rays, and heat treat-
ment were all effective inducers of aneuploidy dur-
ing mitotic cell division.
Of necessity, aneuploidy of one chromosome is

usually monitored at a given time; but Stromnaes
(18) and Parry and Cox (28) have reported that it is
common for aneuploids to be monosomic for more
than one chromosome. Similarly, Parry and Zim-
mermann (27) reported that after treatment with ul-
traviolet light at least a proportion of the colonies
detected which were monosomic for chromosome
VII appeared to be aneuploid for other chromo-
somes. Moreover, Parry and Cox (28) and Bruenn
and Mortimer (5) suggest a differential survival of
aneuploids depending upon which specific chromo-
some is monosomic.

In this paper we describe a number of genetic
systems which have been developed in yeast which
are capable of detecting the induction of aneuploid
cells produced during both mitosis and meiosis.
These strains have been used to screen a wide range
of environmental chemicals for possible activity in
inducing aneuploidy.

Materials and Methods
Detection of Aneuploid Cells Produced
during Mitotic Cell Division.
The diploid strain of Saccharomyces cerevisiae

used for the detection of monosomic colonies (2n -
1) produced by chromosome loss during mitosis was
D6, the genetic details of which have been fully de-
scribed elsewhere (27). This yeast strain carries a
series of recessive and coupled markers on chromo-
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FIGURE 1. Outline of the genetic principles involved in the detection of aneuploid (2n - 1) cells by using the yeast strain D6.

some VII. The strain produces red colonie due to the
presence of the defective alleles ade240 of the gene
adenine-2 in a homozygous condition on chromo-
some XV, which require adenine for growth and are
sensitive to the presence of 2 mg/I. of cycloheximide
in the growth medium. The loss of the copy of
chromosome VII carrying the wild type markers re-
sults in the production of cells carrying only the
recessive and mutant alleles of the five genes shown
in Figure 1. The resulting monosomic cells (2n - 1)
are white in color due to the presence ofthe defective
allele of the gene adenine-3 which results in a mutant
block in the adenine synthetic pathway prior to the
adenine-2 gene, thus preventing formation of the red
pigment characteristic of cells carrying defective al-
leles of this latter gene. Monosomic colonies were
also characterized by their resistance to cyclo-
heximide.
The genotype of D6 is:

The principles involved in the detection of mono-
somic (2n - 1) colonies inD6 are outlined in Figure 1.

In order to detect the production of monosomic
colonies in D6, two different procedures have been
used. In both procedures, cells treated with test
chemicals are allowed to undergo a number of cell
divisions to allow the events leading to aneuploidy to
take place in nonselective medium. The requirement
for this period of nonselective growth has been dem-
onstrated previously after ultraviolet and x-ray
treatment (27). In some experiments, cells were
treated with test chemical before innoculation into
growth media whereas in other experiments the test
chemical was present during the whole of the growth
period in nonselective medium.

Test Procedure 1. Samples of 10 ml of liquid yeast
complete medium were innoculated with 105 yeast
cells harvested from a stationary phase culture. The

Chromosome III his 4 centromere a chromosome XV ade 2-40
+ a ade 2-40

Chromosome VII ade3 + centromere leul trp5 cyh2 metl3
+ ade6 + + + +
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samples were grown for 3 to 5 days in conical flasks
with aeration on an orbital shaker at 28°C, during
which time cell numbers reach approximately 2 x
107 cells/ml. Cells were harvested by centrifugation
and washed 3x in sterile saline. After appropriate
dilution, samples were plated on solid yeast com-
plete medium to score viability and upon solid yeast
complete medium plus 2 mg/l. of cycloheximide
(Koch-Light) to score the frequency of white,
cycloheximide-resistant, monosomic colonies.

Test Procedure 2. This procedure is illustrated in
Figure 2 and has been developed by us specifically
for the routine testing of chemicals. In this tech-
nique, cells were grown in 2 ml of 1/5 normal strength
liquid yeast complete medium supplemented with 2
mg/l. adenine and histidine (to prevent selective ef-
fects during growth) in sealed disposable bottles.
The bottles contain an appropriate dose range of the
test chemical with or without an S9 extract plus the
appropriate cofactors and were incubated with
shaking for 18 hr at 30°C, during which time the cells

undergo approximately four cell divisions. Cells
from the treated bottles were plated (without wash-
ing) after appropriate dilution on solid complete
medium to score viability and upon solid complete
medium plus 2 mg/I. of cycloheximide to score the
frequency of white, cycloheximide-resistant col-
onies.

In both procedures, control cultures which failed
to produce white cycloheximide-resistant colonies
were rejected because of the occasional production
by mitotic crossing-over of homozygous ade-3 cul-
tures which fail to produce white colonies by chro-
mosome loss.

Detection ofDisomic spores (n + 1) Produced
by Nondisjunction during Meiotic Cell
Division in Saccharomyces cerevisiae
The strain used for the detection ofdisomic spores

(n + 1) produced by nondisjunction during meiosis
was D9J2. This strain is a derivative ofDs originally

suspension of stationary
phase cells of D6 at concentration
of 107 cells/ml

4,
0.8 ml cell suspension
0.1 ml test compound
0.1 ml S9 mix
1 ml 2/5 concentration yeast complete medium

culture incubated 18 hours at 300C
on an orbital shaker

culture diluted
10-4 and 0.1 ml
sampl es plated on
YC medium to score
cell viability

1.
plates scored
after 5 days at 28 C

0.1 ml samples plated
on YC + cycloheximide medium
to score cycloheximide
resistant colonies

i
plates scored after
10 days at 280C

FIGURE 2. Flow sheet to illustrate the technical procedure 1 used to detect aneuploid (2n - 1) cells in strain D6.

Environmental Health Perspectives100



constructed by f. Zimmermann. The strain carries a
series of recessive markers in repulsion on both arms
of chromosome VII. The genotype of D9J2 is:

division of meiosis. The system used in our ex-
periments is not capable of detecting disomic spores
produced during the second division of meiosis by

Chromosome V cani Chromosome XI urai

Chromosome VII ade3 + centromer

+ ade6

Diploid cultures ofD12 grow on solid yeast mini-
mal medium but are sensitive to the presence of 30
mg/I. of canavanine (Sigma) in the medium.
Haploid spores of DgJ2 produced by meiotic cell

division in acetate sporulation medium have multiple
growth requirements (each copy ofchromosome VII
confers a requirement for at least four nutrients) and
will not grow on solid yeast minimal medium. Di-
somic spores (n + 1) carrying multiple copies of
chromosome VII are capable of growth on minimal
medium containing 10 mg/l. uracil, if it is assumed
the nondisjunctional event occurred during the first

e leul + cyh2 + aro2 + ades
+ trps + meti3 + lyss +

plating on selective medium. Of the disomic spores
produced, 50%o are capable of growth on minimal
medium containing uracil and canavanine which
selectively kills residual diploid cells which have not
undergone meiosis. The principles of the genetic
system used to detect spores are outlined in Figure 3.

In the treatment procedure used with strain D9J2
for the measurement of disomic spores, cells were
grown stationary phase, washed 3 x in saline and
resuspended in acetate sporulation medium at a con-
centration of 107 cells/ml. The cells were either
treated with test agent at this stage and the cells

I 2n cell of
strain D9

\ meiosis with
non-disjunction of
chromosome VII

+ ade6 + trp5+ *eF+t lys5 +

spore (n + 1) with no nutrient
requirement

n - 1 spore

e +

ade3 + leul + cyh2 + aro2 + ade5

ade3 + leu, + cyh2 + aro2 + ade5|
.-

+ ade6 +trp5 +met+ lys5+

spore (n + 1) with no nutrient
requirement

all spores have multiple
nutrient requirements

n - 1 spore

FIGURE 3. Detection of spores disomic for chromosome VII produced by nondisjunction during meiotic cell division in strain D9.
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washed before the induction of meiosis in fresh
medium, or in some cases the chemical was left for
the duration of the period of meiosis and spore for-
mation.
Treated cells ofD9J2 were incubated on an orbital

shaker at 28°C for up to 8 days to allow the cells to
undergo meiosis and to produce spore tetrads. A
number of chemical treatments result in a delay in
spore formation and therefore the period of incuba-
tion was by necessity variable and dependant upon
the observation of a yield of spore tetrads compara-
ble to that of control cultures.

After sporulation, the cultures were washed three
times in saline and incubated in 2% mushroom ex-
tract at 28°C overnight to remove the asci walls.
Residual diploid cells, that had failed to undergo
sporulation were killed by incubation of the cell sus-
pension in an equal volume of diethyl ether for 10
min. The ether fraction was removed by decanting
and the residual ether removed by aeration and the
cells washed three times in saline. Spore suspensions
were sonicated for 15 sec to assure spore separation.
The remaining cell suspension was diluted and plated
upon solid yeast complete medium to score viability
and upon solid minimal medium plus canavanine and
uracil to detect disomic spores in the cultures.

Results
The effects of treatment of yeast cells of strain D6

with the alkylating agent ethyl methanesulfonate
(EMS) followed by growth in nonselective nutrient
media are shown in Figure 4. Treated stationary
phase cells of D6 were exposed to 2% EMS for
periods of up to 30 min before neutralizing in 10%
sodium thiosulfate before the growth period. The
results in Figure 4 demonstrate that exposure to this
chemical mutagen results in significant increases in
the production ofmonosomic (white, cycloheximide
resistant) colonies of at least 10 x the spontaneous
frequency at exposure times greater than 20 min
using procedure 1.

Figure 5 demonstrates the induction of proto-
trophic colonies produced by gene conversion in
yeast strain JDJ after treatment with 2% EMS in an
identical method, i.e., mutagen exposure followed
by 3 days growth in nonselective medium. The re-
sults obtained demonstrate that for EMS treatment,
prototrophic colonies are induced at exposure times
greater than 2.5 min. reaching a plateau at exposure
times longer than 10 min. In contrast, monosomic
colonies were induced only after considerably longer
exposure times (i.e., greater than 20 min.).

Figure 6 demonstrates the effects of growth of
strain D6 in the presence of up to 40 mg/l. of mito-
mycin C. The results presented here, show that this

crosslinking agent was effective at inducing mono-
somic (white, cycloheximide-resistant) colonies at
concentrations as low as 4 mg/I. with maximum in-
duction at concentrations of approximately 10 mg/Il.
followed by a decline at higher concentrations. Fig-
ure 7 demonstrates the effects of mitomycin C upon
the induction of mitotic gene conversion in strain
JDl under identical treatment conditions. The results
obtained indicate that prototrophs produced by gene
conversion were induced under similar dose re-
sponse conditions to that of monosomic colonies.
However, the maximum induction of prototrophs
was produced at higher concentrations of mitomycin
C (i.e., 20 mg/l.) than that of monosomic colonies
and within the tested dose range there was no evi-
dence of a decline in the induction of prototrophs at
the higher doses.
The synthetic estrogen, stilbestrol dipropionate,

was effective at inducing monosomic colonies of
strain D6 after growth in the presence of concen-
trations above 50 mg/l. as is shown in Figure 8. At
concentrations of stilbestrol above 350 mg/l., a
plateau in the induction response was observable.
Similar experiments with stilbestrol dipropionate
with strain JDJ failed to produce any significant in-
crease in the frequency of prototrophs produced by
mitotic gene conversion. Under similar treatment
conditions oral contraceptives containing estrogen
and progesteronelike sex hormones failed to produce
any increase in the frequency of monosomic col-
onies. Experiments performed with diethyl stilbes-
trol gave positive increases in the frequency of
monosomic colonies in some experiments but no
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FIGuRE 4. Frequency ofmonosomic colonies (white cyhr) of strain

D6 produced after treatment with 2% EMS for periods ofup to
30 min followed by growth in YC liquid (procedure 2).
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FIGURE 5. Induction of prototrophic colonies produced in strain

JDI after treatment with 2% EMS followed by growth in YC
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FIGURE 6. Frequency ofmonosomic colonies (white cyhr) of strain
D6 produced after treatment with 0-40 ,ug/ml. Mitomycin C
followed by growth in YC liquid (procedure 1).

response in others. At the present time we are inves-
tigating further, the reasons for the variable response
obtained with this hormone.
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FIGURE 7. Frequency of prototrophic colonies in strain JDI pro-
duced by mitotic gene conversion after treatment with 0 to 40
,ug/l. of mitomycin C followed by growth in YC liquid (proce-
dure 1): (A) trp+; (0) his'.

The folic acid antagonist sulfacetamide produced
significant increases in monosomic colonies when
cells ofD6 were grown in the presence of the drug at
concentrations greater than 1000 mg/l. when we used
treatment procedure 1. The results obtained, shown
in Figure 9, demonstrate the production of a linear
dose response curve for the induction of monosomic
colonies up to concentrations of 5000 mg/l. Sul-
facetamide has also been tested for its action upon
D6 by using treatment procedure 2. In this procedure
(Fig. 10), the quantitative increase in the number of
monosomic colonies shown in Figure 9 is reduced,
but the concentration of sulfacetamide at which
monosomic colonies are observed was identical (i.e.,
1000 mg/l.).
A number of organic mercury compounds used as

disinfectants and pharmaceutical preservatives have
been tested for their effects upon induced monosomy
in strain D6. Two of the compounds we have tested
are Mercurochrome (disodium 2, 7-dibromo-4-
hydroxymercurifluorescein) and Thiocid [sodium
p-(ethyl mercurimercapto)benzene sulfonate], and
the results of the tests upon these compounds are
reported here.

Figure 11 shows the response of strain D6 to
growth in the presence of Mercurochrome at con-
centrations of 0 to 350 mg/I. by use of test procedure
1. The results obtained demonstrate the effective-
ness of Mercurochrome in inducing monosomic

103

L._

-0
0

-C

>1.O

E-c

0

0
t

U0
E o
o .2



07-

1-z 200-
0

a)

_r_ 150-
C,

0)
CD

00(
0 a)

E UD 50-

C> 0
0.c~~~~
0
0

,ug/rT

FIGURE 8. Frequency
D6 produced after
stilbestrol dipropi

a: Jvv
0

-

-C

01)
* 200-
c-

cn
a)
_n

)0100
0 a)
0
o .W
(I >0

02
u

tkg/r
FIGURE 9. Frequency

D6 produced aftei
sulfacetamide (pr,

(white, cycloheximide-resistant) colonies at con-
centrations greater than 10 mg/I.; at concentrations
above 100 mg/l. the yields of monosomic colonies

* * were reduced. Experiments performed with strain
JD] with Mercurochrome, (Fig. 12) demonstrate
that the compound was also effective at inducing
prototrophs produced by mitotic gene conversion.

Figure 13 demonstrates the effects of treatment of
cells of yeast strain D6 with Thiocid at concen-

/ trations of 0 to 400 mg/l. Thiocid was shown to be an
effective inducer of monosomic colonies using test
procedure-I at concentrations greater than 20 mg/l.

/* The induction curve obtained was biphasic with a
change in slope at concentrations around 200 mg/l.
At the present time we have no data available on the

*/| potential of Thiocid as an inducer of point mutation
or mitotic gene conversion in yeast.

Figure 14 demonstrates the effects of growth of
strain D6 in the presence of up to 1000 mg/l. of

,, , . caffeine in experiments by use of test procedure 2.
100 200 300 400 500 This well known inhibitor ofDNA repair activity in a
il Stilbestrol Dipropionate variety of organisms was shown to be an effective

inducer of monosomic colonies in strain D6 at con-

ofmonosomic colonies (white cyhr) of strain centrations greater than 100 mg/l. Figure 14 also
r growth in the presence of 0 to 500 mg/I. of shows that there was no decrease in the induction of
onate (procedure 1). monosomic colonies over the dose range of caffeine

used in these experiments.
Figure 15 demonstrates the effects of growth of

strainD6 in the presence of the synthetic sweetening
agent saccharin at concentrations of 0 to 1600 mg/l.

* by test procedure 2. The results demonstrate that
saccharin was effective at concentrations above 200

* mg/l. at increasing the frequency of monosomic col-
onies. The results obtained suggest that the induc-
tion of monosomy would be detectable at concen-
trations below 200 mg/l., although at the present time
no data are available on these concentrations. At

*/ * concentrations of saccharin above 400 mg/l. the fre-
quency of monosomic colonies is reduced, until at

// 1600 mg/l. no increase in monosomic colonies above
the spontaneous value could be detected. Experi-
ments have been performed with saccharin under
identical treatment conditions with the yeast strain

/. * D7, which is capable of detecting mitotic crossing-
over and a variety of other genetic events leading to
the production of aberrant colonies. No evidence of
the induction of mitotic crossingover in the presence
of saccharin was detectable in the experiments in-
volving the use of D7.
As shown in Figure 1, the selective procedure used

1000 2000 3000 4000 5000 to detect the induction of monosomic colonies in
ni Sulfacetamide strain D6 involve the observation of cells white in

color and resistant to cycloheximide. The presence
ofmonosomic colonies (white cyhr) of strain of the other recessive alleles carried by chromosome

r growth in the presence of 0 to 5000 mg/I. of VII requires the individual testing of these colonies
ocedure 1). on the appropriate omission media. Examples of the
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FIGURE 11. Frequency of monosomic colonies (white, cyhr) of
strain D6 produced after growth in the presence of 0 to 350
,ug/ml Mercurochrome (disodium 2,7-dibromo-4-hydroxy-
mercurifluorescein) (procedure 1).

test procedure are shown in Table 1. The results
presented are those obtained for control cultures and
for cells treated with EMS and sulfacetamide, both
of which were shown to be effective inducers of
white, cycloheximide-resistant colonies.
Samples were taken of both white and red

cycloheximide-resistant colonies obtained from
selective plates of treated cells. These colonies were
replica plated onto omission media lacking either
leucine or tryptophan. The results shown in Table 1
clearly demonstrate that the majority of white,
cycloheximide-resistant cells ofD6 were also defec-
tive in synthesis of leucine and tryptophan (71%
of EMS-treated cells and 86.3% of sulfacetamide-
treated cells), indicating that these cells had lost the
wild type copies of these genes. In contrast, only a
very small percentage of the red, cycloheximide-
resistant cells (6.6% of EMS-treated cells and 6.5%
of sulfacetamide-treated cells) showed similar re-
quirements for leucine and tryptophan.
The techniques described which involve the use of

selective agar containing cycloheximide were only
able to detect the presence of monosomic (2n - 1)
colonies. In contrast, trisomic (2n + 1) cells pro-
duced as a result of nondisjunction would not be
viable on such selective medium. However, if non-
disjunction occurs during the mitotic cell division of
a diploid cell to produce both monosomic and

200-
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0
I./

> 100- A/

U 0
0V5 0

0Q °) 50-
0>0- 0
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a-
10 20 30 40 50

pg / ml Mercurochrome

FIGURE 12. Frequency of prototrophic colonies in strain JDI
produced by mitotic gene conversion after growth in the pres-
ence of 0 - 50 ,g/ml. Mercurochrome (disodium 2,7,dibromo-
4-hydroxymercurifluorescein) (procedure 2): (A) trp+; (0)
his'.
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trisomic cells the resultant colonies should be de-
tectable on nonselective medium by the production 300ofhalfsectored red/white colonies. In such a case we
would expect the red sector to be trisomic (2n + 1) *
and sensitive to cycloheximide and the white sector
to be monosomic (2n - 1) and resistant to cyc- 100
loheximide.

In our experiments we observed considerable v 200-
numbers of half-sectored red/white colonies (at a /
frequency of approximately 0.1%). Samples of such Qt /
colonies were taken and tested for the presence of /
trisomic red sectors by the procedure shown in Fig- 0
ure 16. In this procedure the white sectors of each _
colony were tested for cycloheximide resistance,
leucine, tryptophan, methionine, adenine, and histi- *
dine requirement. In those colonies where the white

An
*

~0sector was of the genotype cyh-leu-trp-met-ade- .2
and his-, the red sector was tested further. Indi- 0>> __r
vidual red sectors were streaked onto sporulation 0 ,
medium, and those cultures which produced four 100 200 300 400
spored asci (less than 5%) were dissected. Those asci
which yielded complete tetrads (less than 10%) were p9/mi Thiocid
replica plated and the segregation pattern of each

FIGURE 13. Frequency of monosomic colonies (white, cyhr) of
strain D6 produced after growth in the presence of 0 to 400
,g/ml of Thiocid [sodium p-(ethylmercurimercapto) benzene
sulfonatel (procedure 1).

30-
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0 20
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>5~~~~~~~~~~~~~
0 0 .

0~~~~~~~~~~~~

° 40~~~~~~~~~~~~~

0-l

0
0 a

0
0 250 500 750 1000 0U

pg/mi Caffeine
0 400 800 1200 1600

pg/mi Saccharin
FiGuRE 14. Frequency of monosomic colonies (white, cyhr) of FIGURE 15. Frequency of monosomic colonies (white, cyhr) of

strain D6 produced after growth in the presence of 0 to 1000 strainD6 produced after growth in the presence of0-1600 mg/I.
mg/I. caffeine (procedure 2). saccharin (procedure 2).
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tetrad determined. The results of these analyses are
shown in Table 2 for half-sectored colonies derived
from control cultures and those treated with ul-
traviolet light and ethyl methanesulfonate. The re-
sults obtained demonstrate that out of a total of 15
sectors studied by tetrad analysis 14 sectors showed
segregation patterns indicative of a trisomic chromo-
some constitution. Thus at least a fraction of the half
sectored colonies are made up of a monosomic sec-
tor and a trisomic sector which presumably derive
from mitotic chromosome nondisjunction.
The induction of disomic spores resistant to

canavanine in the strain D9J2 produced during me-
iotic cell division has so far been investigated for
only one chemical agent, i.e., the amino acid analog
p-fluorophenylalanine (PFPA). The major problem
encountered with this strain has been the difficulty of
distinguishing between disomic spores capable of
growth on minimal medium and residual diploid cells
that have not undergone meiosis and are also capable
of growth on minimal medium. This difficulty is
compounded by the fact that in a number of cases
high concentrations of test chemicals reduce the fre-
quency of sporulating diploid cells.
A number of techniques have been utilized in an

attempt to estimate the number of disomic spores in
mixed cultures of spores and diploid cells.

Selective Killing of Diploid CeUs. A number of
agents such as heat treatment and exposure to
diethyl ether kill diploid vegetative cells at a faster
rate than that of spores. Diploid cells may also be
selectively killed by the induction of growth in mini-
mal medium and the exposure ofgrowing cells to the
fungicide nystatin. Under such treatment conditions
disomic spores which carry a defective allele of the

ura 1 gene on chromosome XI do notgrow and are not
killed by nystatin exposure.

Selective Plating to Distinguish Diploid CeUs and
Disomic Spores. On minimal medium containing
uracil growth occurs of diploid cells and spores di-
somic for chromosome VII. After a period of incuba-
tion at 28°C the plates can be replica plated onto
minimal medium to distinguish those cells which
have no requirement for the markers on chromo-
some VII but carry a defective allele of the ura 1 gene

( i sectored colonies
produced on non-selected

white sectors tested for medium.
cycloheximide resistance and
requirement for leucine,
tryptophan and methionine

red sector tested
white i sector further

cyhr, leu, trp ade met

white sector
Inot of 2n-1 genotype 4 non-sporulated

red sector C
not tested
further

culture sporulated -
amid those which culture
produce 4-spored not tested
asci dissected further

4 spores from each
ascus were tested incomplete
further tetrads not
(4-6 tetrads per tested further

culture )

tetrads examined
for aneuploid segregations
produced by 2n + 1 genotype

FIGURE 16. Technique used to detect trisomic (2n + 1) cells
produced during mitotic cell division.

Table 1. Test of the phenotypes of the cycloheximide-resistant colonies of strain D6 produced
after treatment with ethyl methanesulfonate and sulfacetamide.

Number of
Number of red

white Number of cycloheximide- Number of
cycloheximide leu-trp- resistant leu-trp-

Treatment colonies colonies cells tested colonies

0 (Pooled data
from 8 2157 1539 3168 39
experiments)

EMS (2%)
15 min 84 59 103 7
20 min 49 32 182 12
30 min 67 51 93 6

Sulfacetamide
150,ug/ml 104 91 114 3
3000 ug/ml 153 138 86 7
5000,±g/ml 86 67 172 14
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on chromosome XI (50o of the spores disomic for
chromosome VII. The heterozygous condition ofthe
can-i gene carried on chromosome V results in the
sensitivity of diploid cells of strain D9J2 to the pres-
ence of the drug caravanine in the growth medium
(50o of the disomic spores produced are also sensi-
tive to caravanine). Plating of mixed culture of dip-
loid cells and spores of D9J2 upon minimal medium
containing uracil and caravanine results in the
growth on this medium of disomic spores carrying
the recessive allele can-i conferring resistance to
caravanine.
Gradient Separation of Diploid Cells and

Spores. Centrifugation of mixed cell suspensions
in sucrose gradients results in a separation of cells
based upon cell volume. In view of the large size
differences between diploid cells and spores they
may be readily separated from each other by cen-
trifugation techniques. The large-scale separation of
spores and diploid cells has been undertaken in our
laboratory by using a zonal rotor (R. S. Tippins,
personal communication). A major advantage of this
technique is thL even in those cultures which pro-
duce only a lowl percentage of spores repeated gra-
dient separation on a zonal rotor can result in the
production of large numbers of spores with little or
no contamination from residual diploid cells.
The increases of disomic spores resistant to

canavanine observable after the meiotic cell division
of cells of D9J2 treated with PFPA are shown in
Figure 17 and for comparison after treatment with

ultraviolet light in Figure 18. In experiments using
both treatments the cells were exposed to diethyl
ether after sporulation as described in the Materials
and Methods.

Ultraviolet light exposures greater than 10 J/m2
produce increases in the frequency of disomic
spores, at doses greater than 500 J/m2 the induction
curve reaches a plateau, although at these doses the
frequency of diploid cells undergoing meiosis was
significantly reduced which prevents the accurage
assay of disomic spores at these high doses. PFPA
treatment which involved the drug being present
during the period of spore formation was effective in
inducing disomic spores at concentrations above 50
mg/l. at concentrations from 300 to 550 mg/l. the drug
produces an exponential increase in the frequency of
disomic spores although at the higher doses the fre-
quency of sporulating cells was reduced. However,
in the case of both ultraviolet light and PFPA treat-
ments the frequencies of disomic spores resistant to
caravanine could be assayed with precision at the
lower end ofthe dose range where the majority ofthe
cells undergo sporulation to produce spore tetrads.

Discussion
The results presented demonstrate that it is a

practical possibility to utilize yeast cultures to study
the ability of environmental chemicals to induce
aneuploidy during either mitotic or meiotic cell divi-
sion. The ability of yeast cells to undergo such

Table 2. Detection of trisoniic (2n + 1) colonies produced mitotic cell division after mutagen treatment of
cells of strain D6 (half sectored red/white colonies identified on nonselective medium were tested).

No. of
tetrads

No. of showing
No. of half tetrads aneuploid

Treatment red sectors Sectors tested segregation

Control 5 1 6 5
2 5 5
3 6 5
4 5 5
5 5 5

UV light 5 1 5 5
(samples taken from doses of 2 4 4
up to 500 J/m2) 3 5 4

4 6 6
5 5 5

Ethyl methanesulfonate, 2% 5 1 5 5
(samples taken from treatment 2 5 5
time of 15 to 30 min) 3 5 4

4 5 5
5 3 0
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changes in chromosome number has been shown to
take place in the presence of a number of chemicals.
In view ofthe potential genetic consequences of such
changes in chromosome number such activity may
represent a previously underestimated hazard in the
use of a variety of chemicals. We suggest that the
ability ofan agent to induce aneuploidy might well be
given a name and we consider that "aneugenic"
might well be an appropriate term.
Monosomic colonies are induced in yeast cultures

undergoing mitotic cell division by a variety of well-
known mutagens ofwidely different modes ofaction.
In this,paper we present evidence that the alkylating
agent ethyl methanesulfonate and the crosslinking
agent mitomycin C induce monosomic colonies at
high frequencies. Similar results have been obtained
for the related alkylating agent methyl methanesul-
fonate (D. Sharp, unpublished data). Both mitomy-
cin C and EMS have also been shown to be effective
inducers of mitotic gene conversion under similar
experimental conditions (29).

Organic mercury preservatives are widely used in
the prevention of bacterial contamination of phar-
maceutical products. We show here that two organic
mercury preservatives, Mercurochrome and
Thiocid, are effective inducers of monosomic col-

onies in yeast cells undergoing mitotic cell division.
Mercurochrome was also shown to be an inducer of
mitotic gene conversion in yeast cells treated under
the same conditions. A related organic mercury pre-
servative thiomersal has been previously shown by
us to be an effective inducer of mitotic gene conver-
sion in yeast at concentrations as low as 0.001 mg/I.
(30).
The other chemicals shown in the results pre-

sented here to be inducers of monosomic cells in
yeast do not induce mitotic gene conversion or mu-
tation in yeast. These compounds, i.e., stilbestrol
dipropionate, sulfacetamide, caffeine, and saccharin
could appropriately be described as aneugenic in
yeast and would not be detectable as genetically
active in the more generally used microbial assay
systems.
The synthetic estrogen, diethylstilbestrol, has

been linked with the induction ofcancer ofthe vagina
in the adolescent female offspring of treated mothers
(31) and has been shown to produce aneuploidy in
the bone marrow cells of the mouse (32). Recent
works (33) with mammalian cells in culture suggests
that diethylstilbestrol produces polyploidy and is
similar in action to colchicine in treated cells. Di-
ethylstilbestrol and the related compound stilbestrol

c 300-
U)'A

* _n

0
1,-1

- .2o 0E L-
o _

>

0 -100
0 C

%- 0

v >

L- O

o 0
L.u

0

0.

Cn -

0

.

100 200 300 460 5

*
-

c

* Cna

1=1
14-1

A. E
0E
0
0L

* 2
0
-C
u

* L-

o
n

0

* 2
a

w

0
U)

0
0-

(I)
i00

pg/ml
p-f lurophenylalanine

FIGURE 17. Frequency of spores disomic for chromosome VII in
strain D9J2 after treatment with 0 to 550 mg/I. p-
fluorophenylalanine.

0

4)

C

c

0 200
a
C
a
U
04-l

.

.

.

.

.

.

0 200 400 600 800
UV exposure J/M2

FIGURE 18. Frequency of spores disomic for chromosome VII in
strain D9J2 after exposure to ultraviolet light 0 to 800 J/m2.

August 1979 109



dipropionate have been used for the treatment of
menopausal symptoms, suppression of lactation, as
an abortifacient and in the treatment ofprostrate and
mammary carcinomas. At the biochemical level di-
ethylstilbestrol has been shown to bind with DNA in
vitro as a result ofthe action of ultraviolet irradiation
or oxidation (34).
The sulfa drugs, such as sulfacetamide, are anti-

bacterial in action, probably due to their ability to act
as false substrates for p-aminobenzoic acid during
folic acid synthesis (35). Although largely super-
ceded by antibiotics, sulfonamides such as sul-
famethoxazole are still used in conjunction with
other folic acid antagonists such as trimethoprin in
the treatment of urinary tract and respiratory infec-
tions.

Saccharin at high dose levels has been demon-
strated to produce tumors in experimental animals
(36). However, there is no convincing evidence that
pure saccharin is capable of inducing mutation in
bacterial cultures, and it has recently been suggested
that saccharin acts as a carcinogen by some epige-
netic mechanism (37). It is of considerable interest
that saccharin treatment results in the induction of
monosomic colonies in yeast. However, at this stage
it would be premature to speculate on the possible
role of induced aneuploidy (aneugenic mechanism)
on the production of tumors after saccharin treat-
ment.
The screening procedure for induced monosomy

using yeast cultures such as D6 and its derivatives
can be readily incorporated into a battery of micro-
bial test systems used in the detection of mutagenic
and carcinogen chemicals. The testing of a chemical
for such activity can be performed over a period of
approximately 4 weeks at a cost of $1500. The dem-
onstration that at least a percentage of the
monosomic colonies induced in D6 are produced by
mitotic chromosome nondisjunction requires a high
level of skill and is probably inappropriate for routine
testing.
The demonstration of the production of spores

disomic for chromosome VII in the yeast strain D9J2
after treatment with p-fluorophenylalanine and ul-
traviolet light show the practicality of such strains of
yeast for the study of environmentally induced
chromosome nondisjunction during meiosis. How-
ever, at the present time there are still a number of
technical difficulties to overcome before the system
can be used in a routine manner for the detection of
meiotic nondisjunction.
The induction of aneuploidy during meiosis in the

prensence of p-fluorophenylalanine was not un-
expected as there is a long history of the use of
p-fluorophenylalanine to induce aneuploidy in a
variety of fungal cultures (18, 38, 39) and we have

recently demonstrated that growth in the presence of
p-fluorophenylalanine also results in the induction of
mitotic gene conversion in yeast (40). However, the
chemical has proved to be useful in our work as a
standard for the evaluation of suitable yeast strains
and technical modifications necessary for the detec-
tion of induced meiotic aneuploidy in yeast.

In view of the mechanistic differences that may
exist in the induction of aneuploidy during mitosis
and meiosis it is now appropriate that those chemi-
cals which are positive aneugens in mitotically di-
viding cells be tested in the meiotic yeast system
described here. Clearly the response of both mitotic
and meiotic yeast cells top-fluorophenylalanine sug-
gest that the simple mitotic system may detect at
least a proportion ofthe chemicals active at meiosis.

This work was supported by M. R. C. Grant No. G976/526/C.
We would like to express our thanks to Mrs. M. Clatworthy for her
help in the tetrad analysis and to Mrs. S. Agar for preparation of
the figures.
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